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Introduction
Savanna ecosystems are dominated by different densities of grasses and woody plants with 
inter-annual changes because of dry and wet seasons. They cover half of the African continent 
and around 20% of the global land surface and are of great significance for ecology (e.g. living 
environment) and economy (e.g. fuelwood, timber) (Kutsch et al. 2008; Main et al. 2016; Scholes 
& Walker 1993). The savanna ecosystems of South Africa are shaped by disturbance processes 
such as droughts, fire and herbivory (Druce et al. 2008; Scholes & Archer 1997; Stevens et al. 
2016), as well as anthropogenic impacts like climate change (e.g. increase in atmospheric CO2) 
or management actions. It is therefore not surprising that these savannas have been undergoing 
various changes during the last decades (Buitenwerf et al. 2012; Skowno et al. 2016). Information 
about changes in woody cover and above-ground biomass (AGB) in national parks (e.g. Kruger 
National Park [KNP]) is important for park management and conservation efforts, as changes 
in woody cover are likely to have effects on other ecosystem patterns and processes. For 
example, an increase in woody cover will lead to a reduction in grass and herbaceous biomass 
(Berger et al. 2019), which will have cascading effects on herbivores (i.e. favouring browsers to 
grazers [Smit & Prins 2015]) and fire regimes (i.e. reducing fire frequency [Smit et al. 2012]). 

The savanna ecosystems in South Africa, which are predominantly characterised by woody 
vegetation (e.g. shrubs and trees) and grasslands with annual phenological cycles, are shaped 
by ecosystem processes such as droughts, fires and herbivory interacting with management 
actions. Therefore, monitoring of the intra- and inter-annual vegetation structure dynamics 
is one of the essential components for the management of complex savanna ecosystems such 
as the Kruger National Park (KNP). To map the woody cover in the KNP, data from 
European Space Agency’s (ESA) Copernicus Sentinel-1 radar satellite (C-Band vertical–
vertical [VV]/vertical–horizontal [VH]) for the years 2016 and 2017, at 10 m spatial resolution 
and repeated acquisitions every 12 days, were utilised. A high-resolution light detection 
and ranging (LiDAR) data set was reclassified to produce woody cover percentages and 
consequently used for calibration and validation. Woody cover estimation for different 
spatial resolutions was carried out by fitting a random forest (RF) model. Model accuracy 
was assessed via spatial cross-validation and revealed an overall root mean squared error 
(RMSE) of 22.8% for the product with a spatial resolution of 10 m and improved with spatial 
averaging to 15.8% for 30 m, 14.8% for 50 m and 13.4% for 100 m. In addition, the product 
was validated against a second LiDAR data set, confirming the results of the spatial cross-
validation of the model. The methodology of this study is designed for savanna vegetation 
structure mapping based on height estimates by using open-source software and open-access 
data, to allow for a continuation of woody cover classification and change monitoring in 
these types of ecosystems.

Conservation implications: Information about the state and changes in woody cover 
are important for park management and conservation efforts. Both increasing (e.g. because 
of atmospheric carbon fertilisation) and decreasing (e.g. because of elephant impact) 
woody cover patterns will have cascading effects on other ecosystem processes such as 
fire and herbivory.
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Furthermore, woody cover maps are useful for a range of 
other park management applications. For example, the KNP 
has used earlier versions of woody cover maps for adjusting 
rhino census estimates based on visibility (Ferreira et al. 
2015) and understanding how woody encroachment may 
impact the large mammal communities of the park (Smit & 
Prins 2015). Also, although remote sensing monitoring of 
woody cover will not be able to replace extensive field 
monitoring of woody vegetation composition (Kiker et al. 
2014), it does provide a cost-effective and wall-to-wall 
approach for monitoring fractional cover, which is 
considered as a satellite remote sensing essential biodiversity 
variable (Pettorelli et al. 2016).

The recent launch of new satellite missions, such as the 
Copernicus Sentinel fleet of the European Space Agency 
(ESA), has led to a tremendous increase in the availability 
of freely available earth observation (EO) data that can be 
utilised for woody cover-monitoring applications. Sentinel-
1A/B, two C-Band Synthetic Aperture Radar (SAR) satellites, 
have a revisit time of up to 12 days in South Africa and acquire 
images with a spatial resolution of 10 m (Attema et al. 2009).

Estimation of woody cover by using EO data from different 
sources across different wavelengths was investigated in 
various studies (Bucini et al. 2010; Higginbottom et al. 2018; 
Main et al. 2016; Urbazaev et al. 2015). However, the 
reproducibility of these applications might be limited 
because of the utilisation of EO data, which are not 
systematically acquired or cost intensive (e.g. Japan 
Aerospace Exploration Agency - Advanced Land Observing 
Satellite [JAXA’s ALOS], aerial images and so on). The goal 
of this article was to introduce a workflow to derive woody 
cover information from freely available Sentinel-1A/B time 
series and light detection and ranging (LiDAR) data (Smit 
et al. 2016). This workflow was applied to produce a wall-
to-wall woody cover map in different spatial resolutions for 
the KNP for 2016 and 2017. The estimation of woody cover 
by using C-Band data has shown great potential in the 
South African Lowveld region (where the KNP is located) 
because of deeper penetration of the radar signals into the 
open savanna vegetation (Mathieu et al. 2013). The 
workflow is publicly available to allow the continuation of 
woody cover monitoring, transferability to other savanna 
regions and future woody cover change mapping.

Data and methods
Sentinel-1 data
The wall-to-wall woody cover estimation for the KNP was 
carried out by using dense time series information from 
Sentinel-1A/B C-Band data between January 2016 and 
April 2017. The Sentinel-1 data were retrieved via the 
Copernicus Open Access Hub (https://scihub.copernicus.
eu/ – Copernicus Sentinel data [2016, 2017]). The data sets 
were acquired in Ground Range Detected (GRD) format 
from relative orbit 145, which covers the entire KNP within 
one overpass. The temporal resolution of the time series is 
12 days and its spatial resolution is 10 m. Sentinel-1 SAR 

backscatter in VV (vertical–vertical/co-polarisation) and 
VH (vertical–horizontal/cross-polarisation) were used as 
inputs for the woody cover prediction model.

The Sentinel-1 data were pre-processed by using GAMMA 
routines (Wegmüller et al. 2016) implemented in pyroSAR, 
a free Python framework for large-scale SAR satellite data 
processing (Truckenbrodt et al. 2019), which provides a 
user-friendly solution for the pre-processing of SAR satellite 
data from recent and historical EO missions. PyroSAR also 
offers the possibility to use open-source software packages 
(e.g. ESA’s Sentinel Application Platform [SNAP]), resulting 
in comparable backscatter information in comparison with 
GAMMA.

The pre-processing steps for the Sentinel-1 data include (1) 
radiometric calibration to convert from digital values to 
radar backscatter; (2) orthorectification, utilising height 
information from the freely available Shuttle Radar 
Topographic Mission (SRTM) (United States Geological 
Survey [USGS] 2017) with a spatial resolution of 30 m and the 
precise orbit state vectors (precise orbit ephemerides [POE]); 
and (3) terrain flattening utilising SRTM to correct for 
radiometric differences caused by local incidence angles 
(Small 2011).

Light detection and ranging data
A LiDAR data set with a spatial resolution of 2 m 
representing vegetation heights was reclassified to woody 
cover estimates. These were used as input for the random 
forest (RF) modelling. The data set is available for 
downloading through the Carnegie Airborne Observatory 
(CAO) maps server (Smit et al. 2016). The LiDAR data were 
acquired by the CAO (Asner et al. 2007) at the end of wet 
season in April/May 2010, 2012 and 2014, respectively, and 
covered a rectangular footprint of approximately 52 km² 
(2 km × 26 km) (Smit et al. 2016). For this study, we used the 
data from 2014, to reduce the time gap between the training 
data and Sentinel-1 time series and thus diminish the 
influence of land cover changes. It needs to be mentioned 
that abrupt disturbances (e.g. fire, herbivory and drought) 
during that time are influencing the woody cover estimation. 
An independent validation was carried out using a LiDAR 
data set collected in May 2012, which covers the areas 
(500 m of each riverfront) along the Sabie, Olifants and 
Letaba River in the KNP (Milan, Heritage & Tooth 2018). 
The conversion from LiDAR vegetation heights to woody 
cover percentages was carried out for both data sets 
identically, which is dealt with in the next section.

Methodology
Preparation of training and prediction data
As a first step, both LiDAR Canopy Height Model (CHM) 
was converted to percentage woody cover. We assumed that 
each pixel with a height value below 0.5 m represents 
ground or grassland pixels, whereas all other pixels 
represent woody cover pixels (Smit et al. 2016; Urban et al. 
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2018). The resulting binary mask (0 = non-woody, 1 = 
woody) was then used to calculate the woody cover 
percentage for a regular grid with a cell size congruent to 
the spatial resolution of the Sentinel-1 (10 m) (sum of the 
woody pixel divided by the amount of LiDAR pixel fitting 
in one Sentinel-1 cell and multiplied by 100). The individual 
Sentinel-1 images were co-registered, mosaicked for the 
area of the KNP and combined into a layer stack for each 
polarisation (VV and VH), respectively. Both Sentinel-1 
stacks (predictor variables) were then fused with the LiDAR 
woody cover (response variable) and utilised as input data 
for the training of the RF model (Figure 1).

Random forest model
The woody cover estimation was performed utilising the 
decision tree classifier RF (Breiman 2001) through an 
implementation of the statistical software R (Machine 
Learning in R [MLR] package [Bischl et al. 2016]). The 
modelling workflow included (1) tuning, (2) spatial cross-
validation, (3) training and (4) prediction (Figure 1). During 
model fitting, the independent decision trees are controlled 
by two main parameters: mtry, which describes the number 
of available predictor variables to split each node, and ntrees, 
the number of regression trees (Breiman 2001). These so-
called ‘hyperparameters’ were optimised (tuning) before 
model fitting, as they were found to be the most sensitive 
variables with respect to accuracy and computation time, to 

identify the best parameter set for the spatial cross-validation 
and training (Heckel et al. 2020; Huang & Boutros 2016).

The tuning was accomplished for mtry [1, 2] and ntrees 
[10, 50, 100, 300, 700] with five repetitions and internal 
spatial cross-validation for each parameter combination. 
With an increasing mtry value, the runtime of the model 
rises likewise because of the large number of observations. 
Therefore, we conducted a grid search approach by using a 
priori knowledge of the hyperparameter search space 
utilising only a limited number of mtry values. The tuning 
revealed that the optimal parameter set, resulting in the 
highest accuracies and best model computation duration 
ratio, is mtry = 1 and ntrees = 300.

According to this, spatial cross-validation (Brenning 2012) 
and training of the model were performed utilising these 
parameters. We used a spatial cross-validation with five folds 
and 100 repetitions to ensure the derivation of stable results, 
for example, consistent accuracies. The trained model was 
utilised for the prediction on the Sentinel-1 time series for the 
entire KNP to produce the first wall-to-wall woody cover 
map for the year 2016/2017 at spatial resolutions of 10 m, 
30 m, 50 m and 100 m. The R scripts as well as example data 
and the final woody cover product are freely available 
through zenodo.org for future usage.

Ethical consideration
I confirm that ethical clearance was not needed/required for 
the study.

Results
The woody cover map, derived from Sentinel-1 time series 
data acquired between 2016 and 2017, is shown in Figure 2. 
The estimations for woody cover range from 0% to 100%. The 
highest woody cover is reached in the northern part and the 
mopane-dominated landscapes on granite in the mid-west of 
the KNP as well as the mixed thorn and woodland areas in 
the southern part (30% – 50% and for some regions even 
higher than 50% on average). Lowest woody cover values 
were found in the open grasslands on basalt in the eastern 
part (below 20% on average). These broad-scale spatial 
patterns indicate that woody cover in KNP is significantly 
controlled by the underlying geology and the north-to-south 
rainfall gradient (Venter et al. 2003). Finer-scale contrasts in 
woody cover are also clearly discernable on the woody cover 
map. For example, the contrast between the lower woody 
cover gabbro areas within the higher woody cover granitic 
areas and the more open sodic areas as opposed to higher 
woody cover riparian zones are clearly visible.

The RF approach revealed that the Sentinel-1 time series data 
from the dry season of 2016 were the most important predictors 
for deriving woody cover information. Furthermore, the cross-
polarised scenes between July and September 2016 have been 
identified to have the highest ranking in the variable 
importance, followed by the co-polarised scenes of the same 
time span. This implies that Sentinel-1 predictors representing 

LiDAR, light detection and ranging; VV, vertical–vertical; VH, vertical–horizontal.

FIGURE 1: The methodological framework for deriving woody cover information 
from Sentinel-1 time series by using light detection and ranging information 
(Scripts 1–4 are freely available via zenodo.org).
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LiDAR, light detection and ranging; RMSE, root mean squared error.

FIGURE 2: Wall-to-wall woody cover map of the Kruger National Park with a spatial resolution of 10 m (right). The footprints of the light detection and ranging data used 
for training (red, Smit et al. 2016) and independent validation (orange, Milan et al. 2018) are shown in the woody cover map. Comparison of the woody cover information 
to high-resolution imagery from Google Earth for three selected regions (A–C) as well as a scatterplot visualising the independent validation of the woody cover map with 
a woody cover estimate based on light detection and ranging data from Milan et al. (2018) (lower left).
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the dry season are key variables for retrieving woody cover in 
heterogeneous savanna ecosystems. This is most certainly 
caused by a lower impact of surface moisture on the C-Band 
backscatter as well as a better separation between woody 
plants and grasses during the dry season (Bucini et al. 2010; 
Heckel et al. 2020; Urbazaev et al. 2015).

The spatial cross-validation, which was performed on the 
training data, resulted in a root mean squared error (RMSE) of 
22.8% for the product with a spatial resolution of 10 m, and 
improved with spatial averaging to 15.8% for 30 m, 14.8% for 
50 m and 13.4% for 100 m as has been found in other radar 
studies such as Santoro et al. (2013). The spatial cross-validation 
revealed coefficient of determination values of R2 = 0.3 (10 m), 
R2 = 0.5 (30 m), R2 = 0.6 (50 m) and R2 = 0.6 (100 m), respectively. 
These error estimates are slightly lower in comparison with the 
accuracy of other woody cover products with spatial resolution 
ranging between 50 m and 120 m (Bucini et al. 2010; 
Higginbottom et al. 2018; Main et al. 2016; Urbazaev et al. 
2015), with RMSE of around 10%. In comparison with this 
study, these products are lacking a spatially weighted cross-
validation (except Higginbottom et al. 2018), resulting in 
modelling accuracies that do not take into account effects of 
spatial autocorrelation (Brenning 2012). An additional 
independent validation was carried out by using woody cover 
estimates based on the LiDAR data from Milan et al. (2018), 
confirming the results of the spatial cross-validation of the 
model (Figure 2 – scatterplot in the lower left for the spatial 
resolution of 10 m). Furthermore, the following RMSE and R2 
are found for the other spatial resolutions: 30 m (RMSE = 19%, 
R2 = 0.5), 50 m (RMSE = 18%, R2 = 0.6) and 100 m (RMSE = 16%, 
R2 = 0.6).

Discussion
The presented workflow was applied to produce a wall-to-wall 
woody cover map in different spatial resolutions (e.g. 10 m, 
30 m, 50 m and 100 m) for the KNP for 2016 and 2017, which are 
freely available via a data repository on zenodo.org. The user 
can choose between different spatial resolutions based on their 
needs. The woody cover maps provide insightful information 
for sustainable park management and future planning and 
conservation-related activities. The overestimation of woody 
cover below 20% is a typical phenomenon in radar retrievals 
(Mathieu et al. 2013; Santoro et al. 2011) caused by surface 
contributions to the signal, such as roughness. Underestimation 
for woody cover above 60% has been observed likewise in 
other studies (Bouvet et al. 2018) and is explained by saturation 
of the C-Band backscatter in dense canopies.

The presented workflow shows the capability of Sentinel-1 
radar time series to retrieve fine-scale woody cover estimates 
in savanna ecosystems at regional scale. We found similar 
error estimates when comparing the accuracies to other 
woody cover products (e.g. Bucini et al. 2010; Higginbottom 
et al. 2018; Main et al. 2016; Urbazaev et al. 2015) at 
comparable spatial resolutions. This article describes the 
approach to derive woody cover from Sentinel-1 time series 
based on open-source software and open-access data to 

foster the reproducibility of the framework for individual 
research interests as well as to facilitate the potential of 
transferring the presented methodology to other savanna 
ecosystems.

It is worth mentioning that radar data are sensitive to 
environmental conditions, e.g., surface roughness and 
surface moisture, which need to be considered in future 
applications utilising this approach. Moreover, the definition 
of a height threshold for woody cover estimation, to exclude 
the non-woody vegetation component, might require an 
adjustment in other regions. We are currently focussing on 
comparing woody cover maps of different years to build up 
a woody cover change-monitoring system, where the 
mentioned environmental factors are analysed. In the near 
future, such a monitoring system will likely benefit from 
open access LiDAR data from the Global Ecosystem 
Dynamics Investigation (GEDI) (Coyle et al. 2015) on board 
of the International Space Station (ISS) and holds the potential 
to become an essential component of park management in 
the KNP and other national parks in South Africa.
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